skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dominguez-Villalobos, Amanda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Intertidal animals deal with physical gradients daily that create stressful conditions across the shore. These physical gradients influence the physiological performance of organisms, requiring responses that may differ with height on the shore. We examined the respiratory response to aerial exposure in the invasive Asian shore crabHemigrapsus sanguineusduring periods of low tide emersion using two field experiments. The first experiment simultaneously measured respiration of individuals collected from different heights on the shore, which had therefore been emersed for different lengths of time. The second experiment measured respiration of individuals collected at different times from the same tidal height. Respiration rates of crabs in both experiments increased immediately after emersion, nearly doubling by and peaking at ~ 1.5 h of aerial exposure, before decreasing again over the next 1.5 h. These results suggest that the energetic cost of low tide exposure is greatest shortly after emersion during the first half of the typical low tide period, but then decreases thereafter. These respiration patterns facilitate the broad intertidal distribution of this species on rocky shores throughout its range. 
    more » « less